Regression with categorical variables

Packages for this section

```
library(tidyverse)
library(broom)
```

The pigs revisited

• Recall pig feed data, after we tidied it:

```
my_url <- "http://ritsokiguess.site/datafiles/pigs2.txt"
pigs <- read_delim(my_url, " ")
pigs</pre>
```

```
# A tibble: 20 x 3
    pig feed weight
  <dbl> <dbl> <dbl>
      1 feed1 60.8
      2 feed1 57
      3 feed1 65
    4 feed1 58.6
5
      5 feed1 61.7
6
      1 feed2 68.7
      2 feed2 67.7
      3 feed2 74
      4 feed2 66.3
10
      5 feed2 69.8
11
      1 feed3
               92.6
```

Summaries

4 feed4

1 feed1 5 60.6 3.06 2 feed2 5 69.3 2.93 3 feed3 5 94.1 3.61

5 86.2 2.90

Running through aov and 1m

- What happens if we run this through 1m rather than aov?
- Recall aov first:

```
pigs.1 <- aov(weight ~ feed, data = pigs)
summary(pigs.1)</pre>
```

```
Df Sum Sq Mean Sq F value Pr(>F)

feed 3 3521 1173.5 119.1 3.72e-11 ***

Residuals 16 158 9.9

---

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ':
```

and now lm

```
pigs.2 <- lm(weight ~ feed, data = pigs)</pre>
summary(pigs.2)
Call:
lm(formula = weight ~ feed, data = pigs)
Residuals:
  Min 10 Median 30 Max
-3.900 -2.025 -0.570 1.845 5.000
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 60.620 1.404 43.190 < 2e-16 ***
feedfeed2 8.680 1.985 4.373 0.000473 ***
feedfeed3 33.480 1.985 16.867 1.30e-11 ***
feedfeed4 25.620 1.985 12.907 7.11e-10 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 3.138 on 16 degrees of freedom

Understanding those slopes

- Get one slope for each category of categorical variable feed, except for first.
- feed1 treated as "baseline", others measured relative to that.
- Thus prediction for feed 1 is intercept, 60.62 (mean weight for feed 1).
- Prediction for feed 2 is 60.62 + 8.68 = 69.30 (mean weight for feed 2).
- Or, mean weight for feed 2 is 8.68 bigger than for feed 1.
- Mean weight for feed 3 is 33.48 bigger than for feed 1.
- Slopes can be negative, if mean for a feed had been smaller than for feed 1.

Reproducing the ANOVA

Analysis of Variance Table

Pass the fitted model object into anova:

```
anova(pigs.2)
```

```
Response: weight

Df Sum Sq Mean Sq F value Pr(>F)

feed 3 3520.5 1173.51 119.14 3.72e-11 ***

Residuals 16 157.6 9.85

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

- Same as before.
- But no Tukey this way:

```
TukeyHSD(pigs.2)
```

Error in UseMethod("TukeyHSD"): no applicable method for 'TukeyHSD' applied to an o

The crickets

- Male crickets rub their wings together to produce a chirping sound.
- Rate of chirping, called "pulse rate", depends on species and possibly on temperature.
- Sample of crickets of two species' pulse rates measured; temperature also recorded.
- Does pulse rate differ for species, especially when temperature accounted for?

The crickets data

Read the data:

```
my_url <- "http://ritsokiguess.site/datafiles/crickets2.csv"
crickets <- read_csv(my_url)
crickets %>% slice_sample(n = 10) # display sample of rows
```

A tibble: 10 x 3 species temperature pulse_rate <chr>> <dbl> <dbl> 1 exclamationis 20.8 67.9 2 niveus 21 58.5 3 niveus 26.5 77 26.5 77.7 4 niveus 5 exclamationis 26.2 85.8 6 niveus 58.9 21 84.7 7 niveus 28.6 20.4 60 8 niveus 76.1 9 niveus 26.5 10 niveus 18.9 50.3

Fit model with 1m

Can I remove anything? No:

```
drop1(crickets.1, test = "F")
```

Single term deletions

```
Model:

pulse_rate ~ temperature + species

Df Sum of Sq RSS AIC F value Pr(>F)

<none>
89.3 38.816

temperature 1 4376.1 4465.4 158.074 1371.4 < 2.2e-16 ***
species 1 598.0 687.4 100.065 187.4 6.272e-14 ***
---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

drop1 is right thing to use in a regression with categorical (explanatory) variables in it: "can I remove this categorical variable as a whole?"

Regression with categorical variables

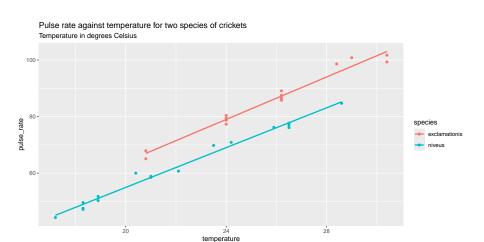
The summary

summary(crickets.1)

```
Call:
lm(formula = pulse_rate ~ temperature + species, data = crickets)
Residuals:
   Min 1Q Median 3Q
                              Max
-3.0128 -1.1296 -0.3912 0.9650 3.7800
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -7.21091 2.55094 -2.827 0.00858 **
temperature 3.60275 0.09729 37.032 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.786 on 28 degrees of freedom
Multiple R-squared: 0.9896, Adjusted R-squared: 0.9888
F-statistic: 1331 on 2 and 28 DF, p-value: < 2.2e-16
```

Conclusions

- Slope for temperature says that increasing temperature by 1 degree increases pulse rate by 3.6 (same for both species)
- Slope for speciesniveus says that pulse rate for niveus about 10 lower than that for exclamationis at same temperature (latter species is baseline).
- R-squared of almost 0.99 is very high, so that the prediction of pulse rate from species and temperature is very good.


What this model is doing: a graph

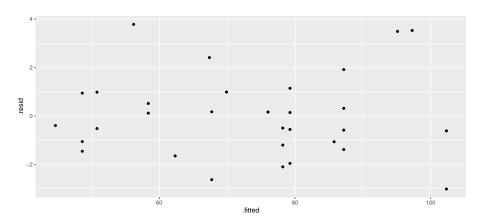
- Two quantitative variables and one categorical: scatterplot with categories distinguished by colour.
- This graph seems to need a title, which I define first.

```
t1 <- "Pulse rate against temperature for two species of crick
t2 <- "Temperature in degrees Celsius"
ggplot(crickets, aes(x = temperature, y = pulse_rate,
    colour = species)) +
   geom_point() + geom_smooth(method = "lm", se = FALSE) +
   ggtitle(t1, subtitle = t2) -> g
```

The graph

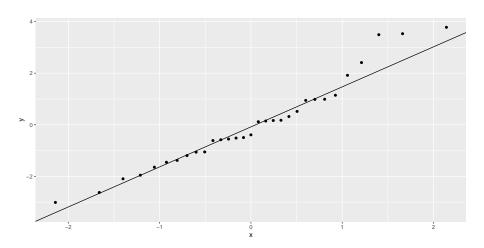
g

Residuals


• We can also check residuals from this kind of model:

```
crickets.1a <- augment(crickets.1)</pre>
crickets.1a
# A tibble: 31 x 9
  pulse_rate temperature species
                                       .fitted .resid
                                                       .hat .sigm
                   <dbl> <chr>
                                        <dbl> <dbl> <dbl>
       <dbl>
                                                             <dbl
1
        67.9
                    20.8 exclamationis
                                         67.7 0.174 0.144
                                                              1.8
2
        65.1
                    20.8 exclamationis 67.7 -2.63 0.144
                                                              1.7
3
        77.3
                    24
                         exclamationis 79.3 -1.96
                                                     0.0806
                                                              1.7
4
                    24 exclamationis 79.3 -0.555 0.0806
        78.7
                                                              1.8
5
        79.4
                    24 exclamationis 79.3 0.145 0.0806
                                                              1.8
6
        80.4
                    24
                         exclamationis
                                         79.3 1.14
                                                     0.0806
                                                              1.8
7
                                                     0.0720
        85.8
                    26.2 exclamationis
                                         87.2 -1.38
                                                              1.8
8
        86.6
                    26.2 exclamationis
                                         87.2 -0.581 0.0720
                                                              1.8
9
        87.5
                    26.2 exclamationis
                                         87.2 0.319 0.0720
                                                              1.8
10
                    26.2 exclamationis
                                         87.2 1.92
                                                     0.0720
                                                              1.7
        89.1
   21 more rows
```

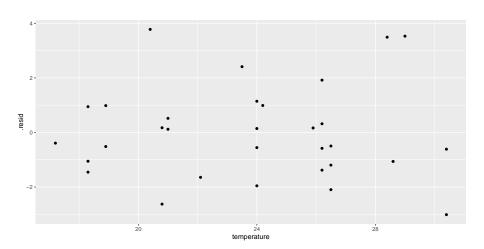
1 more variable: .std.resid <dbl>


Residuals vs fitted

```
ggplot(crickets.1a, aes(x = .fitted, y = .resid)) +
  geom_point()
```

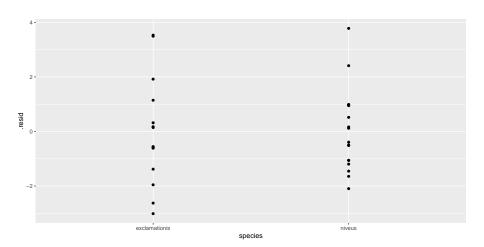

Normal quantile plot of residuals

```
ggplot(crickets.1a, aes(sample = .resid)) +
stat_qq() + stat_qq_line()
```



Residuals vs. x's

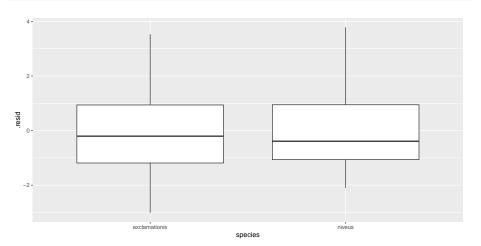
doesn't work as you expect:

```
Error in `pivot_longer()`:
! Can't combine `temperature` <double> and `species` <characte</pre>
```


so do them separately 1/3

```
ggplot(crickets.1a, aes(x = temperature, y = .resid)) +
  geom_point()
```


so do them separately 2/3


```
ggplot(crickets.1a, aes(x = species, y = .resid)) +
  geom_point()
```


so do them separately 3/3

or perhaps better for categorical x's

```
ggplot(crickets.1a, aes(x = species, y = .resid)) +
  geom_boxplot()
```

